资源类型

期刊论文 1373

会议视频 54

会议信息 3

年份

2024 2

2023 94

2022 120

2021 137

2020 81

2019 87

2018 65

2017 72

2016 59

2015 65

2014 58

2013 53

2012 46

2011 55

2010 69

2009 73

2008 51

2007 62

2006 37

2005 22

展开 ︾

关键词

设计 19

三峡工程 13

建筑科学 13

优化设计 9

钢结构 9

增材制造 8

多目标优化 7

机器学习 7

材料设计 6

创新设计 5

施工 4

智能制造 4

3D打印 3

人工智能 3

协同设计 3

城镇建设 3

桥梁工程 3

碳中和 3

耐久性 3

展开 ︾

检索范围:

排序: 展示方式:

Structure improvement and strength finite element analysis of VHP welded rotor of 700°C USC steam turbine

Jinyuan SHI,Zhicheng DENG,Yong WANG,Yu YANG

《能源前沿(英文)》 2016年 第10卷 第1期   页码 88-104 doi: 10.1007/s11708-015-0387-1

摘要: The optimized structure strength design and finite element analysis method for very high pressure (VHP) rotors of the 700°C ultra-super-critical (USC) steam turbine are presented. The main parameters of steam and the steam thermal parameters of blade stages of VHP welded rotors as well as the start and shutdown curves of the steam turbine are determined. The structure design feature, the mechanical models and the typical position of stress analysis of the VHP welded rotors are introduced. The steady and transient finite element analysis are implemented for steady condition, start and shutdown process, including steady rated condition, 110% rated speed, 120% rated speed, cold start, warm start, hot start, very hot start, sliding-pressure shutdown, normal shutdown and emergency shutdown, to obtain the temperature and stress distribution as well as the stress ratio of the welded rotor. The strength design criteria and strength analysis results of the welded rotor are given. The results show that the strength design of improved structure of the VHP welded rotor of the 700°C USC steam turbine is safe at the steady condition and during the transient start or shutdown process.

关键词: 700°C ultra-super-critical unit     steam turbine     very high pressure rotor     structure strength design     strength design criteria     finite element analysis    

Out-of-plane elastic buckling load and strength design of space truss arch with a rectangular section

Senping WANG; Xiaolong LIU; Bo YUAN; Minjie SHI; Yanhui WEI

《结构与土木工程前沿(英文)》 2022年 第16卷 第9期   页码 1141-1152 doi: 10.1007/s11709-022-0866-5

摘要: The out-of-plane stability of the two-hinged space truss circular arch with a rectangular section is theoretically and numerically investigated in this paper. Firstly, the flexural stiffness and torsional stiffness of space truss arches are deduced. The calculation formula of out-of-plane elastic buckling loads of the space truss arch is derived based on the classical solution of out-of-plane flexural-torsional buckling loads of the solid web arch. However, since the classical solution cannot be used for the calculation of the arch with a small rise-span ratio, the formula for out-of-plane elastic buckling loads of space truss arches subjected to end bending moments is modified. Numerical research of the out-of-plane stability of space truss arches under different load cases shows that the theoretical formula proposed in this paper has good accuracy. Secondly, the design formulas to predict the out-of-plane elastoplastic stability strength of space truss arches subjected to the end bending moment and radial uniform load are presented through introducing a normalized slenderness ratio. By assuming that all components of space truss circular arches bear only axial force, the design formulas to prevent the local buckling of chord and transverse tubes are deduced. Finally, the bearing capacity design equations of space truss arches are proposed under vertical uniform load.

关键词: torsional stiffness     strength design     elastic buckling     space truss arches     out-of-plane    

Displacement-based seismic design of high-strength concrete frame columns

ZHANG Guojun, LIU Jianxin, LU Xilin

《结构与土木工程前沿(英文)》 2008年 第2卷 第1期   页码 93-101 doi: 10.1007/s11709-008-0006-x

摘要: Based on the testing results of 108 high-strength concrete columns under constant axial loading and horizontal cyclic loading, the relations between the drift ratio at yield, the maximum displacement drift, the limiting displacement drift, the ductility ratio of testing columns and shear span-to-depth ratio, axial compression ratio, confining reinforcement characteristic values, the ratio of cover area to confined core area as well as longitudinal reinforcement ratio are discussed in this paper. Then the relations between limiting displacement drifts and axial compression ratio, confining reinforcement characteristic values and the ratio of cover area to confined core area are analytically regressed. Subsequently the relations between confining reinforcement characteristic values and axial compression ratio, the limiting displacement drift, and the practical formula used to calculate confining reinforcement characteristic values are put forward. In the end the minimum confining reinforcement characteristic values in the dense hoop regions of high-strength concrete columns are presented by comparatively analysis, and compared with ones in the design code (GB 50010-2002, P. R. China).

关键词: horizontal cyclic     longitudinal reinforcement     design     loading     constant    

An improved design method to predict the E-modulus and strength of FRP composites at different temperatures

Mohammed FARUQI, Gobishanker RAJASKANTHAN, Breanna BAILEY, Francisco AGUINIGA

《结构与土木工程前沿(英文)》 2022年 第16卷 第12期   页码 1654-1654 doi: 10.1007/s11709-020-0622-7

Shear design of high strength concrete prestressed girders

Emad L. LABIB,Hemant B. DHONDE,Thomas T. C. HSU,Y. L. MO

《结构与土木工程前沿(英文)》 2014年 第8卷 第4期   页码 373-387 doi: 10.1007/s11709-014-0087-7

摘要: Normal strength prestressed concrete I-girders are commonly used as the primary superstructure components in highway bridges. However, shear design guidelines for high strength PC girders are not available in the current structural codes. Recently, ten 7.62 m (25 feet) long girders made with high strength concrete were designed, cast, and tested at the University of Houston (UH) to study the ultimate shear strength and the shear concrete contribution ( ) as a function of concrete strength ( ). A simple semi-empirical set of equations was developed based on the test results to predict the ultimate shear strength of prestressed concrete I-girders. The UH-developed set of equations is a function of concrete strength ( ), web area ( ), shear span to effective depth ratio ( / ), and percentage of transverse steel ( ). The proposed UH-Method was found to accurately predict the ultimate shear strength of PC girders with concrete strength up to 117 MPa (17000 psi) ensuring satisfactory ductility. The UH-Method was found to be not as overly conservative as the ACI-318 (2011) code provisions, and also not to overestimate the ultimate shear strength of high strength PC girders as the AASHTO LRFD (2010) code provisions. Moreover, the proposed UH-Method was found fairly accurate and not exceedingly conservative in predicting the concrete contribution to shear for concrete strength up to 117 MPa (17000 psi).

关键词: shear design     high strength concrete     prestressed girders     full-scale tests    

Empirical models and design codes in prediction of modulus of elasticity of concrete

Behnam VAKHSHOURI, Shami NEJADI

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 38-48 doi: 10.1007/s11709-018-0479-1

摘要: Modulus of Elasticity (MOE) is a key parameter in reinforced concrete design. It represents the stress-strain relationship in the elastic range and is used in the prediction of concrete structures. Out of range estimation of MOE in the existing codes of practice strongly affect the design and performance of the concrete structures. This study includes: (a) evaluation and comparison of the existing analytical models to estimating the MOE in normal strength concrete, and (b) proposing and verifying a new model. In addition, a wide range of experimental databases and empirical models to estimate the MOE from compressive strength and density of concrete are evaluated to verification of the proposed model. The results show underestimation of MOE of conventional concrete in majority of the existing models. Also, considering the consistency between density and mechanical properties of concrete, the predicted MOE in the models including density effect, are more compatible with the experimental results.

关键词: modulus of elasticity     normal strength normal weight concrete     empirical models     design codes     compressive strength     density    

Compressive strength prediction and optimization design of sustainable concrete based on squirrel search

《结构与土木工程前沿(英文)》   页码 1310-1325 doi: 10.1007/s11709-023-0997-3

摘要: Concrete is the most commonly used construction material. However, its production leads to high carbon dioxide (CO2) emissions and energy consumption. Therefore, developing waste-substitutable concrete components is necessary. Improving the sustainability and greenness of concrete is the focus of this research. In this regard, 899 data points were collected from existing studies where cement, slag, fly ash, superplasticizer, coarse aggregate, and fine aggregate were considered potential influential factors. The complex relationship between influential factors and concrete compressive strength makes the prediction and estimation of compressive strength difficult. Instead of the traditional compressive strength test, this study combines five novel metaheuristic algorithms with extreme gradient boosting (XGB) to predict the compressive strength of green concrete based on fly ash and blast furnace slag. The intelligent prediction models were assessed using the root mean square error (RMSE), coefficient of determination (R2), mean absolute error (MAE), and variance accounted for (VAF). The results indicated that the squirrel search algorithm-extreme gradient boosting (SSA-XGB) yielded the best overall prediction performance with R2 values of 0.9930 and 0.9576, VAF values of 99.30 and 95.79, MAE values of 0.52 and 2.50, RMSE of 1.34 and 3.31 for the training and testing sets, respectively. The remaining five prediction methods yield promising results. Therefore, the developed hybrid XGB model can be introduced as an accurate and fast technique for the performance prediction of green concrete. Finally, the developed SSA-XGB considered the effects of all the input factors on the compressive strength. The ability of the model to predict the performance of concrete with unknown proportions can play a significant role in accelerating the development and application of sustainable concrete and furthering a sustainable economy.

关键词: sustainable concrete     fly ash     slay     extreme gradient boosting technique     squirrel search algorithm     parametric analysis    

Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams subjected

Antonio MARÍ,Antoni CLADERA,Jesús BAIRÁN,Eva OLLER,Carlos RIBAS

《结构与土木工程前沿(英文)》 2014年 第8卷 第4期   页码 337-353 doi: 10.1007/s11709-014-0081-0

摘要: A mechanical model recently developed for the shear strength of slender reinforced concrete beams with and without shear reinforcement is presented and extended to elements with uniformly distributed loads, specially focusing on practical design and assessment in this paper. The shear strength is considered to be the sum of the shear transferred by the concrete compression chord, along the crack, due to residual tensile and frictional stresses, by the stirrups and, if they exist, by the longitudinal reinforcement. Based on the principles of structural mechanics simple expressions have been derived separately for each shear transfer action and for their interaction at ultimate limit state. The predictions of the model have been compared to those obtained by using the EC2, MC2010 and ACI 318-08 provisions and they fit very well the available experimental results from the recently published ACI-DAfStb databases of shear tests on slender reinforced concrete beams with and without stirrups. Finally, a detailed application example has been presented, obtaining each contributing component to the shear strength and the assumed shape and position of the critical crack.

关键词: shear strength     mechanical model     reinforced concrete     design     assessment     shear tests    

An improved design method to predict the E-modulus and strength of FRP composites at different temperatures

Mohammed FARUQI, Gobishanker RAJASKANTHAN, Breanna BAILEY, Francisco AGUINIGA

《结构与土木工程前沿(英文)》 2022年 第16卷 第12期   页码 1653-1653 doi: 10.1007/s11709-019-0578-7

摘要: In recent years, there has been an increased interest in the use of fiber reinforced polymer (FRP) in the construction industry. However, the E-modulus and strength of such members at high service temperatures is still unknown. Modulus and strength of FRP at high service temperatures are highly required parameters for full design. The knowledge and application of this could lead to a cost effective and practical consideration in fire safety design. Thus, this paper proposes design methods for calculating the E-modulus and strength of FRP members at different temperatures. Experimental data from literature were normalized and compared with the results predicted by this method. It was found that the proposed design methods conservatively estimate the E-modulus and strength of FRP structural members. In addition, comparison was also made with direct references to the real behavior of materials. It was found to be satisfactory. Finally, an application is provided.

关键词: concrete     fiber reinforced polymer     E-modulus     strength     temperatures    

Probability strength design of steam turbine blade and sensitivity analysis with respect to random parameters

DUAN Wei

《能源前沿(英文)》 2008年 第2卷 第1期   页码 107-115 doi: 10.1007/s11708-008-0018-1

摘要: Many stochastic parameters have an effect on the reliability of a steam turbine blade during practical operation. To improve the reliability of blade design, it is necessary to take these stochastic parameters into account. An equal cross-section blade is investigated and a finite element model is built parametrically. Geometrical parameters, material parameters and load parameters of the blade are considered as input random variables while the maximum deflection and maximum equivalent stress are output random variables. Analysis file of the blade is compiled by deterministic finite element method and applied to be loop file to create sample points. A quadratic polynomial with cross terms is chosen to regress these samples by step-forward regression method and employed as a surrogate of numerical solver to drastically reduce the number of solvers call. Then, Monte Carlo method is used to obtain the statistical characteristics and cumulative distribution function of the maximum deflection and maximum equivalent stress of the blade. Probability sensitivity analysis, which combines the slope of the gradient and the width of the scatter range of the random input variables, is applied to evaluate how much the output parameters are influenced by the random input parameters. The scatter plots of structural responses with respect to the random input variables are illustrated to analyze how to change the input random variables to improve the reliability of the blade. The results show that combination of the finite element method, the response surface method and Monte Carlo method is an ideal way for the reliability analysis and probability strength design of the blade.

关键词: Probability sensitivity     sensitivity analysis     number     cross-section     statistical    

State-of-the-art on resistance of bearing-type bolted connections in high strength steel

Guoqiang LI, Yifan LYU, Yanbo WANG

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 569-585 doi: 10.1007/s11709-020-0607-6

摘要: With the recent development of material science, high strength steel (HSS) has become a practical solution for landmark buildings and major projects. The current codes for design of bearing-type bolted connections of steel constructions were established based on the research of conventional steels. Since the mechanical properties of HSS are different from those of conventional steels, more works should be done to develop the appropriate approach for the design of bearing-type bolted connections in HSS. A review of the research carried out on bearing-type bolted connections fabricated from conventional steel and HSS is presented. The up-to-date tests conducted at Tongji University on four connection types fabricated from three grades of HSS with nominal yield strengths of 550, 690, and 890 MPa are presented. The previous research on failure modes, bearing resistance and the design with consideration of bolt hole elongation are summarized. It is found that the behavior of bolted connections in HSS have no drastic difference compared to that of conventional steel connections. Although the ductility is reduced, plastic deformation capacity of HSS is sufficient to ensure the load redistribution between different bolts with normal construction tolerances. It is also found that behavior of each bolt of multi-bolt connections arranged in perpendicular to load direction is almost identical to that of a single-bolt connection with the same end distance. For connections with bolts arranged in parallel to load direction, the deformation capacity of the whole connection depends on the minimum value between the end distance and the spacing distances in load direction. The comparison with existing design codes shows that Eurocode3 and Chinese GB50017-2017 are conservative for the design of bolted connections in HSS while AISC 360-16 may overestimate the bearing resistance of bolted connections.

关键词: High strength steel     bolted connection     bearing behavior     design codes    

Lightweight design of an electric bus body structure with analytical target cascading

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0718-y

摘要: Lightweight designs of new-energy vehicles can reduce energy consumption, thereby improving driving mileage. In this study, a lightweight design of a newly developed multi-material electric bus body structure is examined in combination with analytical target cascading (ATC). By proposing an ATC-based two-level optimization strategy, the original lightweight design problem is decomposed into the system level and three subsystem levels. The system-level optimization model is related to mass minimization with all the structural modal frequency constraints, while each subsystem-level optimization model is related to the sub-structural performance objective with sub-structure mass constraints. To enhance the interaction between two-level systems, each subsystem-level objective is reformulated as a penalty-based function coordinated with the system-level objective. To guarantee the accuracy of the model-based analysis, a finite element model is validated through experimental modal test. A sequential quadratic programming algorithm is used to address the defined optimization problem for effective convergence. Compared with the initial design, the total mass is reduced by 49 kg, and the torsional stiffness is increased by 17.5%. In addition, the obtained design is also validated through strength analysis.

关键词: electric vehicle     body in white (BIW)     lightweight     analytical target cascading (ATC)    

Development of mix design method based on statistical analysis of different factors for geopolymer concrete

Paramveer SINGH; Kanish KAPOOR

《结构与土木工程前沿(英文)》 2022年 第16卷 第10期   页码 1315-1335 doi: 10.1007/s11709-022-0853-x

摘要: The present study proposes the mix design method of Fly Ash (FA) based geopolymer concrete using Response Surface Methodology (RSM). In this method, different factors, including binder content, alkali/binder ratio, NS/NH ratio (sodium silicate/sodium hydroxide), NH molarity, and water/solids ratio were considered for the mix design of geopolymer concrete. The 2D contour plots were used to setup the mix design method to achieve the target compressive strength. The proposed mix design method of geopolymer concrete is divided into three categories based on curing regime, specifically one ambient curing (25 °C) and two heat curing (60 and 90 °C). The proposed mix design method of geopolymer concrete was validated through experimentation of M30, M50, and M70 concrete mixes at all curing regimes. The observed experimental compressive strength results validate the mix design method by more than 90% of their target strength. Furthermore, the current study concluded that the required compressive strength can be achieved by varying any factor in the mix design. In addition, the factor analysis revealed that the NS/NH ratio significantly affects the compressive strength of geopolymer concrete.

关键词: geopolymer concrete     mix design     fly ash     response surface methodology     compressive strength     stress−strain    

Enhanced methane recovery and exoelectrogen-methanogen evolution from low-strength wastewater in an up-flow

Zechong Guo, Lei Gao, Ling Wang, Wenzong Liu, Aijie Wang

《环境科学与工程前沿(英文)》 2018年 第12卷 第4期 doi: 10.1007/s11783-018-1074-3

摘要:

Methane yield increased 22 times from low-strength wastewater by applying conductive fillers.

Conductive fillers accelerated the start-up stage of anaerobic biofilm reactor.

Conductive fillers altered methanogens structure.

关键词: Low-strength wastewater     Methane production     Conductive filler     Microbial community structure    

Strength reduction factors for structural rubbercrete

Bashar S. MOHAMMED,N. J. AZMI

《结构与土木工程前沿(英文)》 2014年 第8卷 第3期   页码 270-281 doi: 10.1007/s11709-014-0265-7

摘要: Many researches have been carried out to study the fresh and hardened properties of concrete containing crumb rubber as replacement to fine aggregate by volume, yet there is no specific guideline has been developed on the mix design of the rubbercrete. The experimental program, which has been developed and reported in this paper, is designed and executed to provide such mix design guidelines. A total of 45 concrete mixes with three different water to cement ratio (0.41, 0.57 and 0.68) were cast and tested for fresh and mechanical properties of rubbercrete such as slump, air content, unit weight, compressive strength, flexural strength, splitting tensile strength and modulus of elasticity. Influence of mix design parameters such as percentage of crumb rubber replacement, cement content, water content, fine aggregate content, and coarse aggregate content were investigated. Three levels of slump value (for conventional concrete mixes) has been selected; low, medium and high slump. In each slump level, water content was kept constant. Equations for the reduction factors (RFs) for compressive strength, flexural strength, splitting tensile strength and modulus of elasticity have been developed. These RFs can be used to design rubbercrete mixes based on the conventional mix (0% crumb rubber content)

关键词: crumb rubber     recycled tire     mix design     reduction factor     strength     modulus elasticity    

标题 作者 时间 类型 操作

Structure improvement and strength finite element analysis of VHP welded rotor of 700°C USC steam turbine

Jinyuan SHI,Zhicheng DENG,Yong WANG,Yu YANG

期刊论文

Out-of-plane elastic buckling load and strength design of space truss arch with a rectangular section

Senping WANG; Xiaolong LIU; Bo YUAN; Minjie SHI; Yanhui WEI

期刊论文

Displacement-based seismic design of high-strength concrete frame columns

ZHANG Guojun, LIU Jianxin, LU Xilin

期刊论文

An improved design method to predict the E-modulus and strength of FRP composites at different temperatures

Mohammed FARUQI, Gobishanker RAJASKANTHAN, Breanna BAILEY, Francisco AGUINIGA

期刊论文

Shear design of high strength concrete prestressed girders

Emad L. LABIB,Hemant B. DHONDE,Thomas T. C. HSU,Y. L. MO

期刊论文

Empirical models and design codes in prediction of modulus of elasticity of concrete

Behnam VAKHSHOURI, Shami NEJADI

期刊论文

Compressive strength prediction and optimization design of sustainable concrete based on squirrel search

期刊论文

Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams subjected

Antonio MARÍ,Antoni CLADERA,Jesús BAIRÁN,Eva OLLER,Carlos RIBAS

期刊论文

An improved design method to predict the E-modulus and strength of FRP composites at different temperatures

Mohammed FARUQI, Gobishanker RAJASKANTHAN, Breanna BAILEY, Francisco AGUINIGA

期刊论文

Probability strength design of steam turbine blade and sensitivity analysis with respect to random parameters

DUAN Wei

期刊论文

State-of-the-art on resistance of bearing-type bolted connections in high strength steel

Guoqiang LI, Yifan LYU, Yanbo WANG

期刊论文

Lightweight design of an electric bus body structure with analytical target cascading

期刊论文

Development of mix design method based on statistical analysis of different factors for geopolymer concrete

Paramveer SINGH; Kanish KAPOOR

期刊论文

Enhanced methane recovery and exoelectrogen-methanogen evolution from low-strength wastewater in an up-flow

Zechong Guo, Lei Gao, Ling Wang, Wenzong Liu, Aijie Wang

期刊论文

Strength reduction factors for structural rubbercrete

Bashar S. MOHAMMED,N. J. AZMI

期刊论文